
J
H
E
P
0
5
(
2
0
0
8
)
0
9
0

Published by Institute of Physics Publishing for SISSA

Received: February 20, 2008

Accepted: May 12, 2008

Published: May 27, 2008

Goldstone bosons and global strings in a warped

resolved conifold

I.R. Klebanov,ab A. Murugan,a D. Rodŕıguez-Gómezac and J. Wardd
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1. Introduction and summary

The AdS/CFT duality [1 – 3] has produced major progress in our understanding of the

intimate relationship between the dynamics of gauge theories and strings. The basic version

of the duality is motivated by considering a stack of many D3-branes in flat space. The

dual descriptions of D3-branes as a supergravity background solution on which strings

propagate, or as objects carrying a worldvolume gauge theory, allows one to identify type

IIB strings on AdS5 × S5 with N = 4 SYM theory. Furthermore one can engineer more

elaborate (and less symmetric) versions of the duality by considering D3-branes at the tip

of a generic CY cone. Among the simplest examples is the cone over T 1,1, the conifold,

which leads to a duality between type IIB strings on AdS5 × T 1,1 with N units of R-

R 5-form flux and a SU(N) × SU(N) SCFT coupled to bifundamental chiral superfields

A1, A2, B1, B2 [4].

The singularity of the conifold can be smoothed out in two different ways: either by

blowing up a 3-cycle, leading to the deformed conifold, or by blowing up a 2-cycle, leading

to the resolved conifold. The deformation of the conifold may be produced by turning

on M units of R-R flux through the 3-cycle [5, 6] (for reviews, see [7]). The resulting

warped product of R3,1 and the deformed conifold gives rise to interesting phenomena
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arising from the fact that the corresponding SU(N +M)× SU(N) gauge theory undergoes

a duality cascade leading to confinement and chiral symmetry breaking in the infrared. The

resolution of the conifold has a simpler interpretation: it corresponds to giving expectation

values to the fields Ai, Bj in the SU(N)× SU(N) gauge theory [8]. Recently a particularly

simple example where only one of the fields acquires a diagonal VEV, B2 = uIN×N , was

worked out in detail [9]. The dual warped product of R3,1 and the resolved conifold

corresponds to a stack of N D3-branes placed at a point on the blown-up 2-sphere at the

tip. The warp factor produced by the D3-branes was explicitly solved for.

The VEV of B2 spontaneously breaks the U(1)B symmetry of the theory. The gauge

invariant order parameter for this breaking is the baryonic operator detB2. In [9] the

modulus of the VEV of this operator was computed holographically using a Euclidean D3-

brane wrapping a holomorphic 4-chain. In this paper we will discuss the phase of this VEV

and phenomena associated with its variation. One of these phenomena is the presence of a

Goldstone boson; we will exhibit the normalizable 4-form perturbation around the warped

resolved conifold that contains it. The required perturbation contains a product of two

2-forms, an antisymmetric tensor in R3,1 and a closed form W on the warped resolved

conifold. The dual of the antisymmetric tensor defines the pseudoscalar Goldstone boson

p. We will write down the equations that determine the 2-form W and show that they

come from the minimization of a positive definite functional which, in the warped case and

with appropriate boundary conditions, remains finite. In fact, this functional is the norm

of the form W . The asymptotically AdS warp factor is crucial for the normalizability of

W ; in the unwarped case, the corresponding W is not normalizable.

On general grounds, a broken global symmetry may give rise to “global” strings as-

sociated with a non-trivial monodromy of the Goldstone boson. We will show that, on

the string side of the duality, they are realized as D3-branes which wrap the finite S2 at

the tip of the warped resolved conifold, with the remaining two world volume directions

lying within R3,1. Interestingly the tension of these strings is not sensitive to the warp

factor. We will show that they are BPS saturated and are stable at the tip, r = 0. Such

wrapped D3-branes couple to the components of R-R 4-form described above, and create

the monodromy of the pseudoscalar p. We will also show that the phase of the baryonic

condensate computed holographically from e−SE3 is determined by p.

The outline of the paper is as follows. In section 2 we review the duality between

the warped resolved conifold and the gauge theory which was elucidated in [9]. In section

3 we study global strings obtained from partially wrapped D3-branes and check their κ-

symmetry. In section 4 we derive the equations for the fluctuation of the R-R 4-form

potential containing the Goldstone mode of the broken U(1)B symmetry, and solve them

in various limits. Section 5 is devoted to a further analysis of spontaneous breaking of

U(1)B using the dual supergravity. In particular, we calculate the Goldstone boson “decay

constant.” We conclude with a few comments in section 6.
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2. The warped resolved conifold

It is well-known that the conifold can be described by the equation

z2
1 + z2

2 + z2
3 + z2

4 = 0 , zi ∈ C . (2.1)

By defining a related set of wi coordinates, we can write this equation as

Z =

(

z3 + iz4 z1 − iz4
z1 + iz4 −z2 + iz4

)

=

(

w1 w3

w4 w2

)

; detZ = 0 . (2.2)

It is possible to solve this by choosing

Z =

(

a1b1 a1b2
a2b1 a2b2

)

(2.3)

and use the (ai, bi) coordinates to describe the conifold. However they are not uniquely

determined, since they are identified under

(ai, bi) →
(

λai,
1

λ
bi

)

, λ ∈ C∗ . (2.4)

In order to partially fix this freedom, one can impose the phase identification ai ∼ eiαai

and bi ∼ e−iαbi. In the dual gauge theory this corresponds to the U(1)B symmetry which

assigns opposite charges to ai and bi. We are still left with the modulus of the above

transformation, which we can fix by demanding |b1|2 + |b2|2 − |a1|2 − |a2|2 = 0. In the

U(1) gauge theory this constraint arises from the D-term, but as emphasized in [8], in the

SU(N) × SU(N) case the analogous constraint is absent.

A simple way to understand the resolution of the conifold is to deform the modulus

constraint above into

|b1|2 + |b2|2 − |a1|2 − |a2|2 = u2 , (2.5)

where u is a real parameter which controls the resolution. The resolution corresponds to

a blow up of the S2 at the bottom of the conifold. In the dual gauge theory turning on

u corresponds to a particular choice of vacuum. After promoting the a, b fields into the

bifundamental chiral superfields of the dual gauge theory, we can define the operator U as

U =
1

N
Tr(B†

1B1 +B†
2B2 −A†

1A1 −A†
2A2) . (2.6)

Thus, the warped singular conifolds correspond to gauge theory vacua where 〈U〉 = 0, while

the warped resolved conifolds correspond to vacua where 〈U〉 6= 0. In the latter case, some

VEVs for the bi-fundamental fields Ai, Bj must be present. Since these fields are charged

under the U(1)B symmetry, the warped resolved conifolds correspond to vacua where this

symmetry is broken [8].

A particularly simple choice is to give a diagonal VEV to only one of the scalar fields,

say, B2. As seen in [9], this choice breaks the SU(2) × SU(2) × U(1)B symmetry of the

CFT down to SU(2)×U(1)×U(1). The string dual is given by a warped resolved conifold

ds2 = h−1/2dx3
1,3 + h1/2ds26 . (2.7)

– 3 –
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The explicit form of the Calabi-Yau metric of the resolved conifold is given by [10]

ds26 = K−1dr2 +
1

9
Kr2

(

dψ2 + cos θ1dφ1 + cos θ2dφ2

)2
+

1

6
r2(dθ2

1 + sin2 θ1dφ
2
1)

+
1

6
(r2 + 6u2)(dθ2

1 + sin2 θ2dφ
2
2) , (2.8)

where

K =
r2 + 9u2

r2 + 6u2
. (2.9)

The N D3-branes sourcing the warp factor are located at the north pole of the finite S2,

i.e. at r = 0, θ2 = 0. The corresponding warp factor h is a function of both r and θ2, which

can be written as [9]

h = L4
∞
∑

l=0

(2l + 1)Hl(r)Pl(cos θ2) (2.10)

where L4 = 27π
4 gsN(α′)2, Pl(cos θ) is the l-th Legendre polynomial, and

Hl =
2Cβ

9u2r2+2β 2F1

(

β, 1 + β, 1 + 2β;−9u2

r2

)

, (2.11)

with the coefficients Cβ and β given by

Cβ =
(3u)2βΓ(1 + β)2

Γ(1 + 2β)
, β =

√

1 +
3

2
l(l + 1) . (2.12)

Using the Euclidean D3-brane located at fixed θ2, φ2, it is possible to compute the VEV

of the baryonic operator detB2. Its modulus is found to be ∼ u
3N

4 [9]. Its phase, which

is determined by value of the Goldstone boson of the broken U(1)B symmetry, will be

discussed in section 5.2.

Far in the IR the gauge theory flows to the N = 4 SYM theory, as evidenced by the

appearance of an AdS5 × S5 throat near the location of the stack of the D3-branes. We

will see that the gauge theory also contains an interesting additional sector coupled to this

infrared CFT. The coupling of such an extra sector and an infrared CFT is reminiscent of

the unparticle physics scenarios [11].

3. Global strings

In addition to the existence of a Goldstone boson, a hallmark of a broken U(1) symmetry is

the appearance of “global” strings, around which the Goldstone boson carries a non-trivial

monodromy. We will show that on the supergravity side of the duality these global strings

are partially wrapped D3-branes.

Let us consider the IR (small r) region. There the warp factor will approach some

function g2 whilst the resolved conifold contains a 2-sphere parametrized by θ2, φ2:

ds2 → g−1dx2
1,3 + gu2dΩ2 . (3.1)

Let us now consider a D3-brane whose world-volume spans the t, x,Ω2 coordinates, such

that the brane wraps the two-sphere but remains extended along one of the x directions.
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From the point of view of the dual gauge theory this will correspond to a string-like object

along t, x. It is natural to identify it with the string originating from the breaking of

U(1)B , since its existence is connected with the finite S2 at the bottom of the resolved

conifold, which in turn requires that the U(1)B is broken. The wrapped D3-brane sources

the fluctuation δC4 discussed in section 4 and creates monodromy of the Goldstone boson

p discussed there. This supports the identification with the global string of the dual field

theory.

It is straightforward to compute the tension of such a wrapped D3-brane1

Ts = 4πT3u
2 =

u2

2π2gs
. (3.2)

Interestingly, the tension is completely independent of the warp factor and remains finite

at the bottom of the conifold.2 The global strings and the Goldstone modes they couple

to belong to another sector of the theory which “sees” the whole S2, and is coupled to the

N = 4 SYM . The very existence of this extra sector coupled to the CFT is an interesting

fact. It is reminiscent of the unparticle physics scenarios [11] typically characterized by a a

particle sector coupled to a conformal (unparticle) sector. Our construction amounts to a

UV completion of such an unparticle scenario in terms of the SU(N)× SU(N) SCFT with

a VEV for one of the bi-fundamental fields.

3.1 Kappa-symmetry for the D3

The kappa-symmetry projection which our D3-brane should satisfy is

Γκǫ = iL−1
DBIγ4ǫ , (3.3)

where γ4 is the pull-back of the target space gamma matrices to the worldvolume of the

brane, and ǫ is the background Killing spinor. Those spinors can be written in terms of

the Killing spinor in the resolved conifold. For that, write the resolved conifold metric in

terms of

e1 =
r√
6
dθ1 , e3 =

√
r2 + 6u2

√
6

dθ2 , (3.4)

e2 =
r√
6

sin θ1dφ1 , e4 =

√
r2 + 6u2

√
6

sin θ2dφ2 , (3.5)

e5 =

√
Kr

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , e0 = K− 1

2 dr ; (3.6)

so that the 6d metric reduces to

ds26 = (e0)2 + (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 , (3.7)

1We set α
′ = 1 throughout the paper.

2In section 5 we will show that, due to backreaction, the tension of the string receives an additional

logarithmically divergent contribution. This divergence is typical for an isolated co-dimension 2 global

string.
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It is then straightforward to see that for our brane wrapping t, x, θ2, φ2 and sitting at

r = 0, the kappa-symmetry projector above reduces to

Γκǫ = iΓtxΓ34ǫ , (3.8)

where Γi are the flat space gamma matrices.

The background Killing spinor satisfies Γ34ǫ = Γ12ǫ [12] (for a review see [13]). Since

iΓ34 and iΓ12 are both projectors (they square to the identity and are traceless), these two

equations can be solved to give

iΓ34ǫ = ǫ , iΓ12ǫ = ǫ , (3.9)

so in the case at hand the kappa-symmetry projection reduces to

Γκǫ = Γtxǫ = ǫ . (3.10)

Now since Γtx is a traceless matrix which squares to one, this condition is satisfied for half

of the background spinors, so our strings are one-half BPS.

4. The fluctuation containing the Goldstone mode

In order to gain more understanding of the strings we have found, we can consider the

linearized backreaction in the background caused by our probe D3. Such a brane will

source, to linearized order, a fluctuation in the 4-form RR potential containing the term

a2(x) ∧W where a2 is a 2-form in R3,1 and W is a closed 2-form in the resolved conifold:

dW = 0. This perturbation has to satisfy the linearized equations of motion, which read

dδF (5) = 0 and δF (5) = ⋆δF (5). We can ensure the latter by taking

δF (5) = (1 + ⋆)d(a2(x) ∧W ) . (4.1)

Note that the perturbation does not mix with any other field fluctuations at the linearized

level. The equations of motion reduce to

d ⋆4 da2 = 0 , (4.2)

provided W satisfies

d(h ⋆6 W ) = 0 , (4.3)

where ⋆4, ⋆6 are the Hodge duals with respect to the unwarped Minkowski and resolved

conifold metrics, respectively. Introducing the field p(x) through ⋆4da2 = dp, we note that

the fluctuation in the 5-form field strength reads

δF (5) = da2 ∧W + dp ∧ h ⋆6 W . (4.4)

The corresponding fluctuation of the 4-form potential is

δC(4) = a2(x) ∧W + p h ⋆6 W . (4.5)

We will see later on that the field p(x) is the Goldstone boson for the broken U(1)B .

– 6 –
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4.1 Equations for W

Different types of forms in conifolds have been discussed in the literature (see for exam-

ple [12, 14, 15]). In our case, we are searching for a closed 2-form which is co-closed upon

multiplication with the warp factor. We will consider an ansatz that satisfies dW = 0:

W = sin θ2dθ2 ∧ dφ2 + d(f1g
5 + f2 sin θ2dϕ2) , (4.6)

where f1, f2 are functions of r, θ2. It is convenient to define a re-scaled set of vielbeins

ǫ11 = dθ1 , ǫ12 = dθ2 , (4.7)

ǫ21 = sin θ1dφ1 , ǫ22 = sin θ2dφ2 , (4.8)

and

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 . (4.9)

Then the 6-dimensional metric on the resolved conifold becomes

ds26 = K−1dr2 +
Kr2

9
(g5)2 +

r2

6
(ǫ11)

2 +
r2

6
(ǫ21)

2 +
r2 + 6u2

6
(ǫ12)

2 +
r2 + 6u2

6
(ǫ22)

2 . (4.10)

After some algebra, the condition d(h ⋆6 W ) = 0 translates into two coupled differential

equations for f1 and f2:

∂r

(

h∂rf1r(r
2 + 6u2)

12

)

(4.11)

+
h

3r(r2 + 6u2)

(

r4
(

1 − f1 +
∂θ2

(f2 sin θ2)

sin θ2

)

− f1(r
2 + 6u2)2

)

+
r

2K

(

1

sin θ2
∂θ2

[

h sin θ2∂θ2
f1

]

)

= 0;

and

∂θ2

[

hr3

3(r2 + 6u2)

(

1 − f1 +
∂θ2

(f2 sin θ2)

sin θ2

)]

+ ∂r

[

hKr3

18
∂rf2

]

= 0 . (4.12)

These equations must be supplemented by a set of boundary conditions. Since the δC(4)

fluctuation couples to the D3-brane wrapped over the S2 at r = 0, W should approach

there the volume form of the finite S2. For that we require both f1(r = 0, θ2), f2(r = 0, θ2)

to vanish. On the other hand, as we will see later on, in the large r region W should

asymptote to the usual ω2 2-form in the singular conifold, where f1(r → ∞, θ2) = 1
2 while

f2(r → ∞, θ2) = 0.

Interestingly equations (4.11)–(4.12) come from minimizing the following functional

I =

∫

W ∧ h ⋆6 W =

∫ π

0
dθ2

∫ ∞

0
dr sin θ2

{

hr3

3(r2 + 6u2)

(

1 − f1 +
∂θ2

(

f2 sin θ2
)

sin θ2

)2

+
hr

12
(r2 + 6u2)

(

∂rf1

)2
+
hr

2K

(

∂θ2
f1

)2

+
hKr3

18

(

∂rf2

)2
+

h

3r
(r2 + 6u2)f2

1

}

. (4.13)
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whose physical interpretation is that it determines the Goldstone boson decay constant

fp (see section 5). With the boundary conditions above, one can check that I remains

finite using the warp factor in [9]. For small r the leading term in the warp factor, h ∼
1
r2 δ(1−cos θ2), can be used to show that no divergence occurs. Had we assumed that f1 was

non-zero at the tip then I would not converge due to the last term. The same argument

holds for f2, since otherwise I would diverge at θ2 = π.

For large r the leading behavior of the warp factor, h = L4/r4, renders the integral

convergent provided f1 approaches a constant (otherwise the term with ∂rf1 would blow

up), while (4.11) sets it to 1/2 (in the unwarped case, the integral would instead diverge).

We have not been able to find an analytic solution for (4.11)–(4.12). However since

with the chosen boundary conditions I remains finite, we expect that such a solution exists

and is unique. It could be looked for using numerical relaxation algorithms applied to the

functional I. We now turn to the analysis of (4.11)–(4.12) in several limits and check that

they give sensible results.

4.2 Unwarped resolved conifold

If we set the warp factor to h = 1, then the equations we are solving describe the harmonic

2-form Wharm on the resolved conifold. This problem, in a slightly different context, has

already been discussed in [15] with similar results. Note that in the case of h = 1, (4.13)

is no longer convergent and therefore the solution for W is not normalizable.

In this instance we can take f1, f2 to depend only on r. Then (4.12) shows that f2

may be set to zero, so we are left with a simplified version of (4.11) which reads

∂r

(

∂rf1r(r
2 + 6u2)

12

)

+
1

3r(r2 + 6u2)

(

r4(1 − f1) − f1(r
2 + 6u2)2

)

= 0 . (4.14)

The solution to this equation is [15]

f1 =
r2

2(r2 + 6u2)
, (4.15)

giving

Wharm =

(

1

2
+

3u2

r2 + 6u2

)

sin θ2dθ2 ∧ dφ2

−
(

1

2
− 3u2

r2 + 6u2

)

sin θ1dθ1 ∧ dφ1 +
6u2r

(r2 + 6u2)2
dr ∧ g5 . (4.16)

In the UV (at large r), this form approaches the harmonic 2-form on the singular conifold,

ω2 =
1

2
(sin θ2dθ2 ∧ dφ2 − sin θ1dθ1 ∧ dφ1) . (4.17)

Thus the harmonic formWharm on the resolved conifold interpolates between sin θ2dθ2∧dφ2,

which is the volume form of the S2 at r = 0, and ω2 at large r.

We note that, even in the cases where the warp factor is non-trivial, Wharm can be

used to construct the following solutions of the equations of motion:

B2 = θ(x)Wharm , (4.18)

– 8 –
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where θ(x) is a function of the Minkowski coordinates only. An analogous solution also

exists for C2. In the equation of motion

d ⋆ dB2 = 0 (4.19)

the warp factor cancels, and it reduces to to d⋆4 dθ = 0. As anticipated one can check that

this mode of B2 is not normalizable. This means that it corresponds to a change in the

Lagrangian of the dual gauge theory. Indeed choosing a constant θ corresponds to changing

g−2
1 − g−2

2 , where gi are the gauge couplings of the SU(N) × SU(N) gauge theory [4].

We have not been able to find an analytic solution to (4.11) and (4.12) with the warp

factor (2.10). However we can analyze the behavior of the solutions in the asymptotic

regimes.

4.3 IR limit: r → 0

The boundary conditions in the IR are such that W approaches the volume form of the

finite 2-sphere. This requires that both f1 and f2 vanish at the tip of the cone. In the

small r limit, (4.11) reads

∂r

(

hru2∂rf1

2

)

+
h

18u2r

(

r4 − 36u4f1

)

= 0 . (4.20)

In turn, for equation (4.12) we have

∂θ2

[

hr3
]

+ ∂r

[

9u2

6
hr3∂rf2

]

= 0 . (4.21)

In order to proceed further, we need the explicit form of the warp factor in the IR. It

is known from [9] that its behavior depends crucially on the point in the sphere we are

considering. As argued in [9], for a small distance y from the north pole, h ∼ y−4. For

small r and θ2, y
2 ∼ 2r2/3 + u2θ2

2, and thus

h ∼ 9L4

4(r2 + 3u2θ2
2/2)

2
. (4.22)

In order to analyze the behavior of the fluctuation near the north pole, we will start

by setting θ2 = 0 and keeping a very small r. In this case from (4.22) ∂θ2
h = 0. Upon

taking h = 9L4

4r4 , (4.21) becomes

∂r

(

∂rf2

r

)

= 0 . (4.23)

The appropriate solution is f2 ∼ r2 which indeed vanishes when r approaches zero. We

turn now to equation (4.20) for θ2 = 0. It is easy to show that f1 = r4

36u4 . Note that f1

also goes to zero with r.

It is instructive to consider an alternative way of reaching the north pole, namely

running along the S2 at r = 0 towards θ2 = 0. From (4.20) we see that setting r = 0

requires us to set f1 = 0 in the whole S2. Also at r = 0 and small θ2, the warp factor

in (4.22) leads to h = L4(uθ2)
−4. Then equation (4.21) reduces to

1

u2θ4
2

∂r(r
3∂rf2) = 0 . (4.24)

Therefore ∂r(r
3∂rf2) = 0 at r = 0, which sets f2 to be constant which we choose to vanish.
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4.4 The UV limit: r → ∞

For large r the warp factor approaches that of the singular conifold, namely h = L4

r4 .

However in this case the subleading corrections can be written as a series expansion in

powers of 1/r, so it is possible to truncate the series at a certain l. Let us consider not

just the pure UV behavior but also the first correction, which already exhibits angular

dependence

h =
L4

r4
+

9u2L4 cos θ2
r6

+ . . . . (4.25)

Denoting f1 and f2 as the relevant functions in the large r region, it is straightforward to

see that they should be of the form

f1 =
1

2
+ F1(θ2, r) , f2 = F2(θ2, r) ; (4.26)

where Fi are terms which vanish in the asymptotic limit. Therefore both f1 and f2 satisfy

the required boundary conditions in the UV . The equations (4.11), (4.12) read

∂r

[

∂rF1

12r

]

+
1

3r3

[

− 2F1 +
3

2

∂θ2

(

sin θ2∂θ2
F1

)

sin θ2
+
∂θ2

(

F2 sin θ2
)

sin θ2

]

− 2u2

r5
= 0 ; (4.27)

and

∂r

[

∂rF2

6r

]

+ ∂θ2

[(

1

r3
+

(

9u2 cos θ2 − 6u2
)

r5

)(

1

2
− F1 +

∂θ2

(

F2 sin θ2
)

sin θ2

)]

= 0 . (4.28)

The form of these equations suggests that

F1 =
u2

r2
A(θ2) , F2 =

u2

r2
B(θ2) . (4.29)

Then (4.27) reduces to

∂θ2

(

sin θ2∂θ2
A
)

sin θ2
+

2

3

∂θ2

(

B sin θ2
)

sin θ2
− 4 = 0 , (4.30)

which can be easily integrated to give the first order equation

1

2
sin θ2∂θ2

A+
B

3
sin θ2 = −2 cos θ2 + k , (4.31)

where k is a constant of integration. We can now plug this into (4.28), and get a single

differential equation (which is third order) for A

4k

sin θ2
− 8

3

cos θ2
sin θ2

− 9

2
sin θ2 −

5

3
∂θ2

A− 3

2
∂θ2

[

∂θ2

(

sin θ2∂θ2
A
)

sin θ2

]

= 0 . (4.32)

Let us mention that it is possible to write down the next order terms, which will still depend

on rational powers of r. It suggest that the next correction is going to go like 1
r4 . However

at the next following order, we will already encounter irrational powers of r coming from
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the fact that h contains them. (4.32) is most easily solved in terms of F = sin θ2∂θ2
A

through the equation

sin θ2∂θ2
A = −Ã 2F1

(

−5

6
,
1

3
,
1

2
; cos2 θ2

)

(4.33)

−B̃ 2F1

(

−1

3
,
5

6
,
3

2
; cos2 θ

)

cos θ2 +
27

8
sin2 θ2 −

8

5
cos θ2 +

12k

5
.

where now Ã and B̃ are more integration constants. Using (4.32) in (4.31) gives B sin θ2.

For reasons that will be clarified later we would like to keep ∂θ2
(B sin θ2) finite, which

in turn requires that ∂θ2
A is also finite. Now given (4.33), in order to for this to hold we

have to impose boundary conditions such that the r.h.s vanishes at both 0 and π. This

fixes

Ã =
2k

5
√
π

Γ

(

1

6

)

Γ

(

3

4

)

, B̃ =
24

5
√
π

Γ

(

2

3

)

Γ

(

11

6

)

. (4.34)

Let us point out that in the asymptotic UV region we find W = ω2, exactly as in the

unwarped toy model.

5. Spontaneous breaking of the baryonic symmetry

In a field theory with spontaneously broken U(1) symmetry, the classical value of the U(1)

current is

Jcl
µ ∼ i

2

(

Φ∗∂µΦ − Φ∂µΦ∗
)

= |Φ0|2∂µπ(x) , (5.1)

where we substituted Φ = Φ0e
iπ(x), and π(x) is the Goldstone field. Let us show how this

expectation value appears for the U(1) baryonic current using the AdS/CFT correspon-

dence. At large r the perturbation δF5 behaves as

δF (5) → (1 + ⋆)r−3dr ∧ dp ∧ ω3 . (5.2)

Therefore the leading term in δC(4) contains r−2dp ∧ ω3 (note that this corresponds to a

different gauge choice from that in (4.5)). We also know that the massless gauge field AB
µ

dual to the baryonic current enters as δC(4) = AB ∧ ω3.

It follows that

AB
µ (r) → r−2∂µp . (5.3)

This is a normalizable perturbation near the boundary of AdS5 that, through the AdS/CFT

dictionary [8], implies a relation of the form (5.1).3

As for any Goldstone boson, it is interesting to determine its “decay constant” fp which

appears in the 4-d effective action as

f2
p

∫

d4xdp ∧ ⋆4dp (5.4)

3Essentially the same argument applies to the breaking of the baryonic symmetry in the cascading

gauge theory. Using the perturbation containing the Goldstone mode found in [16] we observe the same

asymptotic behavior as in (5.2) up to powers of ln r characteristic of the cascading theory. This again

implies the expectation value of the baryonic current (5.1).
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In deriving this action from dimensional reduction of the type IIB action, we face the

usual problem that δF (5) containing the Goldstone boson perturbation is self-dual so that

δF (5) ∧ ⋆δF (5) = 0. Instead we will adopt the approach of removing the self-duality

constraint and using δF (5) = dp ∧ h ⋆6 W . Now the action no longer vanishes, and we find

f2
p ∼ 1

g2
s

∫

hW ∧ ⋆6W (5.5)

Note that from (4.13), f2
p ∼ g−2

s I. Therefore, in the warped case, f2
p is a finite quantity

determined by the minimum of the functional I. With the analysis of the leading asymptotic

corrections we can examine the UV behavior of the integrand in I

∫

dr sin θ2

(

L4

6r3
+
L4u2

6r5

(

9 cos θ2 + 2
∂θ2

(

B sin θ2
)

sin θ2

)

+ O(r−7)

)

(5.6)

Note that with the choice of boundary conditions (4.34), we find

∂θ2

(

B sin θ2

)

|θ=0,π = 0 . (5.7)

Therefore the first correction of order O(r−5) in (5.6) vanishes upon integration. Note also

that (4.34) also renders ∂θ2
A finite through the relationship in (4.33). Indeed with this

choice of boundary conditions, the δF5 remains under control on the whole S2.

For scales larger than the resolution length u, we expect the geometry to approach

that of the singular conifold. In turn, for scales smaller than u, we expect the resolution

of the geometry to take over and smoothly close the cone. Thus, in order to estimate the

decay constant, we will take the asymptotic value (5.6) and cut off the radial integral at

r ∼ u. We find the decay constant goes like

f2
p ∼ L4

u2g2
s

∼ N

gsu2
(5.8)

Therefore fp blows up in the limit where u vanishes. Using this we can define a normalized

Goldstone boson field p̃ = pfp, in terms of which the VEV of the current takes the canonical

form 〈JB
µ 〉 ∼ fp∂µp̃, in agreement with (5.1).

5.1 Global strings from baryonic symmetry breaking

As argued in section 3, a D3-brane wrapped over the 2-cycle of the resolved conifold is

dual to the global string in the gauge theory which arises due to the baryonic symmetry

breaking. Now that we have found the supergravity fluctuation (4.5) of the 4-form gauge

potential, which contains the Goldstone boson, we can provide further support for this

identification.

The string is charged under the 2-form potential a2 in Minkowski space. Writing the

Minkowski metric as

dx2
1,3 = −dt2 + dx2 + dρ2 + ρ2dθ2 , (5.9)

– 12 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
0

we see that a string extended along t, x and localized at ρ = 0 produces a2 = a(ρ)dt ∧ dx.
The equation of motion following from the 4-dimensional effective action (5.4) can be recast

in terms of a, and reads

−∂ρ(ρ∂ρa) ∼
Ts

f2
p

nδ(ρ) , (5.10)

where n is the integer winding number of D3 around the S2. Here Ts stands for the 4d

tension of the string in (3.2). This equation can be integrated to give

a(ρ) ∼ Ts

f2
p

n log ρ . (5.11)

We also note that ⋆4da2 = d(Tsnθ/f
2
p ), giving p = Tsnθ/f

2
p . This exhibits the expected

monodromy of the Goldstone boson upon encircling the string. Furthermore we can com-

pute the energy density due to the back-reaction of the string:

E = f2
p

∫ ρmax

(∂µp)
2ρdρdθ ∼ 2π2T 2

s

f2
p

n2 log ρmax . (5.12)

Thus we see that the energy density exhibits a logarithmic divergence, which is typical for

a global string of codimension two. It is worth noting that E is of order N0, while both

f2
p , Ts are of order N .

5.2 The phase of the baryonic condensate

As shown in [9] the expectation values of baryonic operators can be deduced from the ac-

tion of certain Euclidean D3-branes (E3-branes). The particular warped resolved conifold

studied in [9], corresponding to all D3-branes placed at the north pole of the S2 at r = 0,

is dual to the SU(N)× SU(N) gauge theory with a VEV for a bi-fundamental field B2. To

calculate the VEV of the gauge invariant baryonic operator det B2, we need to consider

e−SE3 = e−SDBIe−SCS for the E3-brane wrapping the 4-chain with internal coordinates

r, ψ, θ1, φ1, located at fixed θ2, φ2. The phase of 〈detB2〉 comes from the factor e−SCS , since

for a Euclidean embedding the Chern-Simons term is imaginary. This fact was important

also for computing baryon VEV’s in the cascading gauge theory, where they were related

to Euclidean D5-branes [17]. For the resolved conifold case, where baryonic operators

correspond to D3-branes,

SCS = iT3

∫

P [C(4)] . (5.13)

We expect that the phase of the baryonic condensate is proportional to the Goldstone

boson field p. Indeed, using the δC(4) (4.5) containing the Goldstone boson, we find that

only the second term contributes to the integral:

SCS = i16π2T3p

∫ ∞

0
dr

hr3

3(r2 + 6u2)

(

1 − f1 + sin−1 θ2∂θ2
(f2 sin θ2)

)

. (5.14)

In order to check the convergence of the integral, we note that in the UV f2 vanishes and

f1 approaches 1/2. The integrand approaches L4/(6r3), rendering the integral convergent.
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We can estimate the integral as before, cutting-off at r = u and using the asymptotic values

for f1, f2. We find

SCS ∼ i
9pN

8u2
. (5.15)

Thus although we cannot perform the full integral, we see that the phase of the baryonic

condensate behaves as we expected, namely it is proportional to the axion p.

6. Final comments

In this note we studied breaking of the U(1) baryonic symmetry in the warped resolved

conifold, and the Goldstone boson it produces. This field might acquire some non-trivial

monodromy in the 4-dimensional Minkowski space and generate a global string. We have

found such a string and proposed the equations which the axionic Goldstone boson should

satisfy. Our results depend on the existence of a very particular mode involving a 2-form

in the resolved conifold. This 2-form, W , has to interpolate between the volume form of

the finite S2 at the bottom of the conifold, and the ω2 2-form in the singular conifold

to which the geometry asymptotes. Unfortunately, we have not been able to find this

2-form analytically in the warped case. However, we have provided some evidence that,

in the asymptotic regimes, the equations admit a solution which behaves as expected.

In any case we have shown that the equations which this 2-form satisfies can be derived

from minimizing a functional I. With the appropriate boundary conditions this functional

remains finite, supporting the existence of such a 2-form. Additionally, since its norm is

given by I, our fluctuation is a normalizable mode. The value of I also controls the decay

constant fp of the Goldstone boson. We note that I is divergent for the unwarped solution

and is finite only for the warped solution.

It would be interesting to find the full solution for W . Since we have reduced finding

f1 and f2 to a variational problem, it should be possible to use a numerical relaxation

method with the functional I.

It is worth stressing that the discussion in this note concerns the case of non-compact

warped conifold dual to the gauge theory where the baryonic symmetry is global. It would

be interesting to consider embedding this set-up into a full string compactification. In that

case one would expect the baryonic symmetry to be gauged, and our strings to appear as

local ones. The discussion goes in very much the same spirit as that in the case of a pure

CY compactification [20, 21]. Since we are considering the resolved conifold, the would-be

gauge U(1)B is in the Higgs phase. In turn this implies a linear potential for the monopole-

antimonopole interaction. One would be tempted to identify the string connecting the

monopoles with our string, which would then appear as a local string.4 However the local

string is actually a combination of strings obtained by wrapping branes on a set of cycles

that sum up to zero in homology. It would be interesting to adapt the analysis in [20, 21]

to the case at hand, in which there is a non-trivial warp factor and 5-form flux. Also, the

δC(4) mode found here might be responsible for a higher-form mediation of SUSY breaking

along the lines of [22]. A key ingredient in this set-up is the existence of two homologous

4At the SUGRA level, similar strings to these have been discussed in for example [18, 19].
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2-cycles allowing for a combination of two U(1) gauge fields to remain massless. This

combination appears in the low energy theory and can potentially mediate SUSY breaking

between the hidden and visible sectors. Perhaps such a construction can be implemented

in a flux compactification with two different warped resolved conifold throats separated by

some distance within the compact dimensions.

A related motivation for our work is that the partially wrappedD3-branes may provide

models for cosmic strings in warped compactifications with resolved conifold throats. In

such models, the smallness of the string tension is not due to the warp factor, but is

rather due to the smallness of the resolution parameter u which also sets the scale of the

string tension. Such a construction seems to provide a realization of the unparticle physics

scenario [11], since after the RG flow to the IR, the resulting theory contains an interacting

CFT (the N = 4 theory) coupled to a non-conformal sector whose scale is set by u.

It would also be interesting to extend the results obtained here to more general resolved

CY cones, such as those discussed in [23].
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